

⊗ Class 12 Mathematics – Chapter: Applications of Derivatives

1. Introduction

- Derivatives help analyze the behavior of functions.
- Used to find rates of change, slopes, and optimize real-world problems.

2. Rate of Change of Quantities

- Derivative represents the instantaneous rate of change.
- Example: Velocity is the rate of change of displacement.

3. Increasing and Decreasing Functions

- A function $f(x)$ is **increasing** in an interval if $f'(x) > 0$ for all x in that interval.
- It is **decreasing** if $f'(x) < 0$ for all x in that interval.
- Use derivative test to determine intervals of increase or decrease.

4. Tangents and Normals

- **Tangent line:** Line touching the curve at one point with slope $f'(x)$.
- Equation of tangent at $x=a$ = $y-f(a) = f'(a)(x-a)$

$$y-f(a) = f'(a)(x-a)$$

- **Normal line:** Perpendicular to tangent.
Slope of normal = $-1/f'(a)$.

5. Maxima and Minima

- Points where function attains local maximum or minimum.
- Use First Derivative Test:
 - $f'(x)=0$ and $f'(x)=0$ and changes sign from $+$ to $-$ \Rightarrow local max.
 - $f'(x)=0$ and $f'(x)=0$ and changes sign from $-$ to $+$ \Rightarrow local min.
- Use Second Derivative Test:
 - $f''(a)>0$ $f''(a) > 0$ $f''(a)>0$ \Rightarrow local min.

- $f''(a) < 0$ $f''(a) < 0$ $f''(a) < 0 \Rightarrow$ local max.

6. Applications in Real Life

- Finding maximum profit, minimum cost.
- Optimizing area, volume in geometry.
- Physics: motion problems.

7. Exam Tips

- Practice derivative tests for maxima and minima.
- Know formulas for tangent and normal.
- Solve word problems involving optimization.
- Understand physical interpretation of derivatives.